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Abstract

Visual (VIS) and near-infrared (NIR) spectroscopy was applied to discriminate bruises and non-bruised healthy spots

on ‘Golden Delicious’ apples. Two types of bruises were examined; those created by controlled impact and those by

compression. Reflectance spectra of apples were measured in the range from 400 to 1700 nm. The data were analysed

with canonical discriminant analysis (CDA). The squared canonical correlation (CR2) was 0.74 for discriminating

impact bruises and non-bruised tissue, and a CR2 of 0.68 was obtained for distinguishing compression bruises and

sound tissue. Based on the linear discriminant functions, built with canonical components, the misclassification errors

for non-bruised apples were mainly due to the presence of compression bruises. The classification accuracy was

improved by taking the type of bruises into account in the model.
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1. Introduction

Bruising is one of the most important and

prevalent surface defects in apples (Malus domes-

tica Borkh.). Apple bruising is a frequent cause of

value loss in marketed and processed apples

(Shewfelt and Prussia, 1993). The agitation and

bouncing inherent in the transport of apples can

cause bruising. Since the customer’s buying beha-

viour is mostly determined by the visual appear-

ance of the fruit, it is useful to be able to

discriminate and sort the bruised apples from the

healthy ones before sale.

There are two main types of bruises often

encountered in apples: impact bruises and com-

pression bruises. Impact bruises are formed when

apples impact hard surfaces or other apples.

Brown et al. (1993) state this type of bruise is

most abundant in practice. The compression

bruises are caused by a static or quasi-static force,

in contrast with a dynamic force that forms impact
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bruises. Impact bruises are normally more severe
than compression bruises and affect the appear-

ance of the fruit. An impact bruise develops from

skin to a shear region in the parenchyma tissue,

while a compression bruise has a thin layer of

damaged tissue under the skin. Because of this

bruise geometry, compression bruises are very

difficult to detect after 1 day (Upchurch et al.,

1994). Furthermore, there is more free juice in the
impact bruises (Holt and Schoorl, 1984).

During the last decade spectrophotometric sur-

face defect detection has offered an alternative or

complementary method to machine vision in food

research (Zwiggelaar et al., 1996; Kim et al., 2001).

Geoola et al. (1994) proposed diffuse reflectance

spectroscopy in the wavelength range from 750 to

800 nm to classify bruised and non-bruised
‘Golden Delicious’ apples. Aneshansley et al.

(1997) examined bruises that were 24 h old with

an imaging system, using 58 wavebands in the

460�/1030 nm region. They observed that all wave-

bands above 850 nm performed well for bruise

detection on ‘Golden Delicious’ apples. Spectro-

photometry in the visual/near-infrared (VIS/NIR)

range is a suitable technique to detect disorders in
fruit, because it is a non-destructive and fast

method, so that large numbers of fruit can be

evaluated without losses caused by the test.

The general objective of the research was to

study the spectral detection techniques, to improve

the bruise detection. Until now, the influence of

different types of bruises has not been studied in

depth. The type of bruise determines the degree of
damage and the visual appearance, and may also

influence the accuracy of classification. Therefore,

the purpose of this paper was to evaluate the effect

of the bruise type on the discrimination of bruised

and non-bruised areas on ‘Golden Delicious’

apples using spectrophotometry in the VIS/NIR

range.

2. Materials and methods

2.1. Fruit material

From a local supermarket, 168 ‘Golden Deli-

cious’ apples were purchased in June 2000 (108

apples) and April 2001 (60 apples). The origin was
France. In addition, 200 ‘Golden Delicious’ apples

were harvested from the Centre for Fruit Cultiva-

tion in Rillaar (Belgium) in September 2001.

2.2. Compression bruising and impact bruising

As described by other researchers (Upchurch et

al., 1994; Zwiggelaar et al., 1996; Blahovec et al.,
1997) compression bruises were created with a

Universal Testing Machine (UTS-5TTM, UTS Test

system GmbH & Co. KG, Ulm). From the 168

purchased apples, 78 were compressed between

two flat steel plates. The moving plate went

downwards with a speed of 10 mm min�1 to a

displacement of approximately 5 mm to reach the

bioyield point in the force�/deformation curve. The
upper steel plate exerted compression force at the

top of an apple and the lower plate bruised the

bottom of the apple at the same time. Each surface

was dusted with flour to mark the exact compres-

sion area on the apple.

A pendulum set up described by Van Zeebroeck

et al. (in press) was used to induce impact bruises.

The impact energy was about 0.05 J. Multiple
impacts due to rebounds were prevented. Two

impact bruises were induced on opposite sides of

each apple (90 of the 168 purchased apples and 200

apples from the Centre for Fruit Cultivation).

2.3. Optical data acquisition

Reflectance spectral measurements were carried

out with Zeiss MCS 501 and Zeiss MCS 511
instruments (Carl Zeiss Jena GmbH, Jena, Ger-

many) in the wavelength range of 400�/1000 nm

and 900�/1700 nm, respectively. The intersection

was selected at 980 nm.

A schematic of the spectral reflectance measure-

ment system is shown in Fig. 1a. The light source

was a 20 W halogen lamp. A fibre holder (shown

in Fig. 1b) was used to fix the fibres that carried
the light to the sample and the reflected light from

the sample to the detectors. The angle between the

light source and detector fibre head was 458. The

fibre holder and sample were in contact while

measuring. The size of the opening of the fibre

holder was chosen so that only a marked spot, not
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the surrounding tissue, was measured. A dark

correction was performed by turning off the light

source and covering the head of the fibre with an

opaque cap. The calibrated reflectance was calcu-

lated as the percentage of the reflection of a

standard reference material (spectralon, of 99%

reflectance, Labsphere Inc.). The reference calibra-
tion and dark correction were repeated every half

an hour to remove the temperature influence on

the equipment.

2.4. Sample preparation

For the apples purchased from the supermarket,

due to time restriction, the spectral measurements

were finished within 3 days after bruise induction.

To maintain the bruise level consistency during the
testing period, the apples were stored in a cool

room at 2 8C and 85% relative humidity while not

being measured. Three hours before the measure-

ments the apples were kept at room temperature to

equilibrate.

Four spots (two controlled bruised and two

non-bruised) were marked and measured for each

apple. The non-bruised areas were determined at
positions where no bruises were detected by

manual inspection. All together 670 spectra were

registered from these 168 purchased apples, from

the four controlled spots on each apple (two

observations were removed as outliers).

Similarly, 800 spectra were collected from the

200 apples picked from the Centre for Fruit

Cultivation in Rillaar (Belgium). Since the optical
measurements were performed locally on the

apples, each measurement was used as an inde-

pendent observation in the analysis.

2.5. Pre-processing methods

Before discriminant analysis, the spectra were

pre-processed to decrease the influence of noise.
The pre-processing procedures were performed

with a statistical program for multivariate calibra-

tion called ‘The Unscrambler† 6.11’ (CAMO

ASA, Trondheim, Norway). After smoothing

and reducing the number of variables by the

averaging method, a 10 nm spectral resolution

was obtained. Afterwards, a first derivative was

calculated with the technique developed by Norris
(1983). Three neighbouring points were selected

for this calculation.

2.6. Canonical discriminant analysis (CDA)

The bruised and intact surfaces are expected to

be different in VIS/NIR reflectance spectra. To

study this hypothesis, a CDA was performed.

In SAS/STAT† User’s Guide (SAS Institute
Inc., 1990), CDA is described as a dimensional-

reduction technique related to principal compo-

nent analysis and canonical correlation. Given a

class variable and several quantitative variables,

CDA derives canonical components (linear com-

bination of the quantitative variables) that sum-

Fig. 1. Diagram of the spectral reflectance measurement system

(a) and enlarged drawing of the fibre holder (b).
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marise between-class variation in much the same
way that principal components summarise total

variation. The first canonical component has the

maximal multiple correlations with the class vari-

able. The second canonical component is uncorre-

lated with the first one and corresponds to the

second highest possible multiple correlations with

the class variable, etc.

The number of canonical components, which
have statistically significant meaning, is defined as

the minimum of k and (c �/ 1), where k is the

number of original variables and c is the number

of levels of the class variable.

In this case, two class variables were defined to

group observations in the discriminant analyses,

‘property’ and ‘type’. Class variable ‘property’ has

two levels indicating ‘Bruise’ and ‘Non-bruise’.
The ‘Bruise’ group includes compression and

impact bruises. Class variable ‘type’ has three

levels indicating ‘Compression bruise’, ‘Impact

bruise’ and ‘Non-bruise’. The original variables

in this study are the wavelengths ranging from 409

to 1639 nm pre-processed as described above. As a

consequence, only one or two canonical compo-

nent(s) would be retained in the discriminant
analysis.

The canonical function is defined as:

CANmi�
Xk

j�1

bmjXij

where CANmi refers to the m th canonical com-

ponents for the ith measurement. Xij is the first

derivative of reflectance value for the ith measure-
ment at the j th variable (wavelength). bmj is the

coefficient of the m th canonical component for the

jth original variable.

The coefficients or the weights for each original

variable were exported and afterwards they were

applied to a new measurement to perform the

same transformation. In the canonical space, the

new observation was classified depending on
Mahalanobis distance to the group means.

The squared canonical correlation (CR2) and

Wilk’s lambda (l ) were used to assess the dis-

criminant function(s). The value of CR2 gives the

amount of variation among the groups that is

explained by the discriminating variable(s). It can

be considered as the equivalent of R2 (coefficient
of determination) in regression analysis for cano-

nical analysis (Sharma, 1996). The Wilk’s l value,

ranging from 0 to 1 gives an idea about the

structure of the data. The closer the value is to 1,

the more overlap there is among different groups.

CDA was carried out with SAS† V8.2 (SAS

Institute Inc.).

3. Results and discussion

3.1. Visual inspection

A small number of apples were cut into two
parts through the bruised spots after optical

measurements. Then the maximum depth of the

bruise on the vertical section was measured. The

average depth was about 5 mm for the impact

bruises and 4 mm for compression bruises. Gen-

erally, for the compression bruises the flesh

discoloration (brown) was discontinuous, whereas

the impact bruise coloration was more homoge-
neous. Most of the impact bruised areas turned

brown within 30 min after impacting. However,

for the compression bruises the softening was

more significant than browning.

Fig. 2 shows the average of the Norris’ first

derivatives of the spectra for each group. From

this plot, it can be observed that there is less

difference between healthy and compression
bruised spots than between the healthy and impact

bruises.

3.2. Canonical discriminant analysis

To compare the discriminating power of the

different wavelength ranges, CDA was performed

in VIS (409�/700 nm), in NIR (700�/1639 nm) and
in the full spectral range (409�/1639 nm) after pre-

processing as described above. The CR2 and l

values (data not shown) show that better discri-

minant results can be obtained in the full range

than only in NIR or VIS. Therefore, the full VIS/

NIR range was used in further analysis.
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3.2.1. Comparison of CDA results by taking bruise

type into account or not

The scatter plot of the 670 observations, which

is obtained from the 168 purchased apples, repre-

sented in two canonical dimensions is shown in

Fig. 3a. The class variable ‘type’ is used to group

the observations. Three clusters are clearly defined

in the plot, corresponding to the groups ‘Compres-

sion bruise’, ‘Impact bruise’ and ‘Non-bruise’.

Considering the centroid positions of each

group (marked with black circle), the first canoni-

cal component (Can1) was good for discriminating

the impact bruised spots from the compression

bruised and non-bruised spots. In addition the

second canonical component (Can2) was suited to

separate the compression bruised and non-bruised

spots.
The clear separation of the impact bruises and

compression bruise could be a result of different

factors. Firstly, it could be assumed that the apple

groups used for bruising have different character-

istics stemming from different production or

postharvest treatment, and therefore are discrimi-

nated by their optical properties. However, in the

group of ‘Non-bruise’, which includes measure-

ments of all the apples, no clusters were detected,

so the apple groups should have no significant

influence on bruise type discrimination. Secondly,

the clear discrimination between the bruise types

might be due to the different ways of bruising. The

bruising was done in controlled ways as described

above. However, since the techniques are very

different (static/dynamic) the resulting damage

level (e.g. force, energy) of the tissue is not exactly

the same.

A hypothesis might also be formulated based on

the state of the plasma membrane and the

viscoelastic property of apples. The plasma mem-

brane is partially permeable in living cells, allow-

ing water to pass through relatively freely, but

restricting the movement of sugars and many ions

and salts. Bruising can only take place when the

membrane is ruptured. After that, oxygen from the

air is available, allowing enzymatic reactions and

the browning of tissue. Holt and Schoorl (1984)

have shown that in a slow compression bruise test,

there are as many bands of burst cells as cell-

bursting episodes recorded on the force�/deforma-

tion curve. Between the bands, the tissue appeared

largely undamaged. In this experiment this might

Fig. 2. Average plot of the first derivative of spectra for each group. IB: the average of 180 observations from ‘Impact bruise’ group;

Non-B: the average of 336 observations from ‘Non-bruise’ group; CB: the average of 154 observations from ‘Compression bruise’

group.
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be represented by the above described discontin-

uous coloration of the bruise. In the impact test, a

few cell-bursting bands were distinguished, and

generally the whole region was damaged. During

compression less rupture of the plasma membrane

will occur than during impacting. As a conse-

quence, less brown discoloration reactions take

place in the plate-contact area of the apple within

some time after compression. In Mohsenin (1986,

pp. 553�/560), it is also indicated that many

commodities, including apples, show different

kinds of damage under quasi-static loading than

under impact loading, and the differences have

been reasonably interpreted based on viscoelasti-

city.
Fig. 3a shows that misclassification mainly

occurs on the edge along the classification lines

with the most overlap between compression bruise

and non-bruise. However, as this can be noticed in

Fig. 3b, which is the scatter plot of canonical

scores for the spectra by using the class variable

‘property’ to group the observations, the misclas-

sification can occur at a place far from the

classification line. Without considering the types

Fig. 3. Scatter plot of Norris’ first derivative spectral data in the canonical space. (a) Grouping with class variable ‘type’; ‘Non-bruise’

(I): healthy observations on impacted apples; ‘Non-bruise’ (C): healthy observations on compressed apples. (b) Grouping with class

variable ‘property’. The centroids of each group are marked with a black circle.
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of bruises, there is more overlap between the

healthy and bruised groups. The total misclassifi-

cation would be higher. The classification lines

drawn in the figures are defined with equal prior

probability, and can be shifted to meet some

special requirements. For example, if a high

classification accuracy for the ‘Non-bruise’ group

is wanted, the classification line can be shifted

more to the bruises group by using a high prior

probability for the healthy observations during

calibration.

To get numerical information about the CDA, a

linear classification procedure was performed

based on one or two canonical component(s)

depending on the class variable used for grouping

observations. The classification results are shown

in Table 1. Cross-validation was used. By this

method, CDA classifies each observation in the

dataset using a discriminant function computed

from the other observations in the dataset, exclud-

ing the observation being classified (SAS Institute

Inc., 1990).

By using a high prior probability for the ‘Non-

bruise’ group, the correct classification for the

healthy group reaches a plateau of 97.02% for

both the ‘type’ and ‘property’ class variables to

group observations. Forty spectra (11.98% of 334

spectra) of bruised areas were classified as ‘Non-

bruise’ when the type of bruises is not considered

(see Table 1a). Only 24 bruises in total were

misclassified from either ‘Impact bruise’ (11) or

‘Compression bruise’ (13) to ‘Non-bruise’ when

the type was taken into account (shown as

percentages in Table 1b). The total number of

misclassified observations decreases when the type

of bruise is taken into account while building a

model.

Data in Table 1b also suggest that more

misclassification between the ‘Compression bruise’

and the ‘Non-bruise’ groups occurred than be-

Table 1

Classification results (in percentages) obtained with and without considering bruise type based on the canonical component(s)

Actual class group Number of observations Classified as

‘Bruise’ ‘Non-bruise’ ‘Impact bruise’ ‘Compression bruise’

(a) Without considering the bruise typea

Non-bruise 336 2.98 97.02

Bruise 334 88.02 11.98

(b) Considering the bruise typeb

Non-bruise 336 97.02 0.89 2.09

Impact bruise 180 6.11 92.22 1.67

Compression bruise 154 8.44 1.30 90.26

(c) For the dataset only including impact bruised and non-bruised observationsc

Non-bruise 336 1.19 98.81

Impact bruise 180 95.00 5.00

a Using high prior probability for non-bruised group, and using one canonical component.
b Using high prior probability for non-bruised group, and using two canonical components.
c Using equal prior probability for both groups, and using one canonical component.

Table 2

CR2 and l of the canonical discriminant analysis in full range

IB, CB and Non-B IB�/Non-B CB�/Non-B Bruised�/Non-bruised

Squared canonical correlation (CR2) Can1: 0.741, Can2: 0.681 Can1: 0.805 Can1: 0.823 Can1: 0.695

Wilk’s lambda (l ) Can1: 0.083, Can2: 0.319 Can1: 0.195 Can1: 0.177 Can1: 0.304

IB, CB and Non-B dataset includes all observations and using ‘type’ as the class variable; IB�/Non-B dataset includes the

observations from ‘Impact bruise’ and ‘Non-bruise’ groups; CB�/Non-B dataset includes the observations from ‘Compression bruise’

and ‘Non-bruise’ group; Bruised�/Non-bruised includes all observations but using ‘property’ as the class variable.
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tween groups of ‘Impact bruises’ and ‘Non-bruise’.
If compression bruised spots are excluded from the

analysis, the correct classification of non-bruised

spectra in canonical dimension is improved to

98.8% (Table 1c).

3.2.2. Assessment criteria for CDA

The values of CR2 and l from different models

are shown in Table 2. While using ‘type’ as the
class variable to distinguish three groups, the CR2

was 0.741 for Can1 and 0.681 for Can2. It

indicates that the discrimination is more powerful

along Can1 than Can2 (see description above).

Visual inspection of Fig. 3a suggests that it is

easier to separate impact bruises from the non-

bruised group than to distinguish compression

bruises from the healthy tissue. Similarly, the
CR2 were obtained between each ‘Bruise’ and the

‘Non-bruise’ groups. As listed in Table 2, those

CR2 values are apparently greater than those

distinguishing three groups from each other at a

time, which indicates that the discrimination is

more able to separate two groups than three

groups. The model using the class variable ‘prop-

erty’ for group observations (without considering
the ‘Bruise’ type) gives a CR2 value of 0.695, which

appears to be a low value compared to the other

models.

The l values for the data grouping by variable

‘type’, are 0.083 for Can1 and 0.319 for Can2 and

indicates that there is much more overlapping on

the second canonical axis and confirms the visual

inspection from Fig. 3a.

3.3. External validation

CDA results, based on cross-validation, show

that the bruise type has influence on bruise

detection. This method however, is not a truly

unbiased estimation of the probabilities of correct

classification. For this reason, an external valida-

tion was performed by collecting 800 more spectra
from the apples picked in Rillaar into analysis. On

those apples no compression bruises were induced,

since most bruises in apples are reported to be

caused by impact. They were mixed with the 670

spectra obtained from the purchased apples and

then split into a calibration and a validation

dataset randomly. The 350 samples assigned to

the validation dataset included 150 non-bruised

spots, 49 compression bruised spots and 151

impact bruised spots. The remaining spectra

composed the calibration dataset.

Based on the same calibration and validation

dataset, three models were built and compared

with respect to the classification result. Model A

and Model B were similar with regard to the cross-

validation analysis. They finish the classification in

one step. However, Model A did not consider the

bruise type and Model B did, while calibrating

models. The classification results are shown in

Table 3a and b. The details of impact and

compression bruises are given in the table. The

result that we are interested in is bruise/non-bruise

identification, rather than bruise type. Therefore, a

value of total bruise classification accuracy is given

in Table 3. It is a percentage of the sum of the

observations correctly classified as bruise from

‘Impact bruise’ and ‘Compression bruise’ groups

among the total number of bruised observations.

Table 3

Classification results (in percentages) from different models for

the validation dataset

Actual class group Number of

observations

Classified as

‘Bruise’ ‘Non-

bruise’

(a) One-step model and without taking the bruise type into

account during calibrationa

Non-bruise 150 4.67 95.33

Impact bruise 151 91.39 8.61

Compression bruise 49 75.51 24.49

(b) One-step model and with taking the bruise type into account

during calibrationb

Non-bruise 150 8 92

Impact bruise 151 94.04 5.96

Compression bruise 49 93.88 6.12

(c) Two-step modelc

Non-bruise 150 4.67 95.33

Impact bruise 151 93.38 6.62

Compression bruise 49 95.92 4.08

a Total bruise classification accuracy: 87.5%; total misclas-

sification rate: 9.14%.
b Total bruise classification accuracy: 94%; total misclassi-

fication rate: 6.86%.
c Total bruise classification accuracy: 94%; total misclassi-

fication rate: 5.43%.
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Model C was made in two steps, because

according to the CR2 values, from the CDA results

above, a better discrimination was achieved when

only two groups of the observations were used for

calibration instead of three. It might improve the

classification result if the calibration dataset only

includes two types of observations each step: one

type of bruise and non-bruise per step.

The two steps are:

Step 1 : Using a model calibrated with impact

bruise and non-bruise data, if a new observa-

tion is classified into the ‘Bruise’ group in this

step, this observation would be regarded as

bruised. The remaining observations enter the

next step for further classification.

Step 2 : Using a model calibrated with compres-

sion bruise and non-bruise data, if an observa-

tion is classified into the ‘Bruise’ group in this

step, it would be regarded as bruised. Other-

wise, it is considered as healthy and classified

into ‘Non-bruise’ group.

Again, the aim is bruise detection, rather than

bruise type. Therefore, the final number of bruises

is the sum of those areas recognised as bruised in

these two steps. The classification results from this

two-step model are shown in Table 3c. The details

of each step are listed in Table 4.

It is obvious that Model A and Model B

perform more poorly than the classification model

based on two steps with respect to the total

misclassification rate (given in Table 3a�/c). The

total misclassification rate is defined as the per-

centage of all misclassified samples, bruised and

healthy, among the total validation samples.

Model A has the largest error of about 10% in

total samples, nearly two times that of Model C.
With Model A the correct classification for

intact areas is the same (95.3%) as that from the

two-step model; however, its bruise detection is

worse. This is mainly due to the large error in

classifying the compression bruises, of which only

75.5% are correctly classified as bruise. With

Model B, the bruise detection performs as well as

the two-step model (94%); however, more loss is

found in the healthy group.

With the two-step Model C, the classification

results were 95.3% correct classification for the

non-bruised and 94% for the controlled bruises.

Among the correct classified controlled bruises,

93.48% of the impact bruises were classified

correctly as bruise and a high 95.9% classification

accuracy was achieved for the compression

bruises. The higher classification accuracy for
compression bruise may be explained by two

factors. On the one hand, as shown in Table 2,

the CR2 value for discriminating only impact

bruise and non-bruise is smaller than for distin-

guishing only compression bruise and non-bruise.

On the other hand, the number of impact observa-

tions is much higher than that of compression

bruise.
The comparison of these three models shows

that taking the bruise type into account while

calibrating could improve the total classification

accuracy. In addition, the discriminant function

built on two groups per step is more powerful than

on three groups in one step.

4. Conclusions

Canonical discriminant analysis was used to

discriminate between bruised and non-bruised

Table 4

Details of steps 1 and 2

Actual class group Classified as

‘Bruise’

Remained for step

2

Step 1

Non-bruise (n a �/

150)

3 147

Impact bruise (/n�
151)

140 11

Compression bruise (/

n�49)

21 28

Came from step 1 Classified as

‘Bruise’

Classified as ‘Non-

bruise’

Step 2

Non-bruise (/n�147) 4 143

Impact bruise (/n�11) 1 10

Compression bruise (/

n�28)

26 2

a Number of observations.
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spots on ‘Golden Delicious’ apples. The Norris’
first derivative of VIS/NIR reflectance spectra was

used. The CDA results show that bruise type

should be taken into account while building a

classification model. More misclassification oc-

curred between the groups of ‘Non-bruise’ and

‘Compression bruise’ than between the ‘Impact

bruise’ and ‘Non-bruise’.

The classification model composed of two steps
can improve the classification performance. The

good discrimination results are promising for

detecting bruises on ‘Golden Delicious’ apples by

using the VIS/NIR reflectance spectrophotometric

method. However, in this research the reflectance

spectra were measured locally rather than globally.

The classification speed, in regard to the spectrum

recording and data processing, is not quick enough
to incorporate in grading machines. Further work

is required to optimise and implement this techni-

que. More fundamental research is also required to

provide a physicochemical basis of the models.
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